SECTION 23 05 41 #### NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT ### PART 1 - GENERAL ### 1.1 DESCRIPTION A. Noise criteria, seismic restraints for equipment , vibration tolerance and vibration isolation for HVAC and plumbing work. ### 1.2 RELATED WORK - A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Procedures and requirements for managing and disposing construction and demolition waste. - B. Section 01 91 00.02, GENERAL COMMISSIONING REQUIREMENTS: Requirements for commissioning, systems readiness checklists, and training. - C. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete inertia bases. - D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic requirements for non-structural equipment - E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23. - F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Requirements for flexible pipe connectors to reciprocating and rotating mechanical equipment. - G. Section 23 74 13, OUTDOOR CENTRAL-STATION AIR-HANDLING UNITS: Requirements for Air Handling Unit internal vibration isolation. - H. Section 23 31 00, HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining. - I. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests. - J. SECTION 23 37 00, AIR OUTLETS and INLETS: noise requirements for G-grilles. - K. SECTION 23 21 23, HYDRONIC PUMPS: vibration isolation requirements for pumps. - L. SECTION 23 34 00, HVAC FANS: sound and vibration isolation requirements for fans. - M. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training. #### 1.3 QUALITY ASSURANCE - A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - B. Noise Criteria: 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels: | Type Of Room | NC | LEV | /EL | |---------------------------------------------|----|-----|-----| | Bathrooms and Toilet Rooms | 40 | | | | Conference Rooms | 35 | | | | Corridors(Public) | 40 | | | | Examination Rooms | 35 | | | | Laboratories (With Fume Hoods) | 45 | to | 55 | | Lobbies, Waiting Areas | 40 | | | | Locker Rooms | 45 | | | | Offices, Large Open | 40 | | | | Offices, Small Private | 35 | | | | Operating Rooms | 40 | | | | SPD (Decontamination and Clean Preparation) | 45 | | | | X-Ray and General Work Rooms | 40 | | | - 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the fore-going noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration. - 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room. - 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation. - C. Seismic Restraint Requirements: - 1. Equipment: - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished. - b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of 100 percent of the weight of the equipment furnished. - 2. Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - 3. Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS. VA Medical Center, Palo Alto, California Project No. 640-424 Centers for Ambulatory Care, Polytrauma & Blind Rehabilitation Research and VMU D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet. ### 1.4 SUBMITTALS - A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Vibration isolators: - a. Floor mountings - b. Hangers - c. Snubbers - 2. Bases. - 3. Seismic restraint provisions and bolting. - 4. Acoustical enclosures. - C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported. - D. Seismic Requirements: Submittals are required for all equipment anchors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings. #### 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): - 1. 2009 Fundamentals Handbook, Chapter 7, Sound and Vibration - C. American Society for Testing and Materials (ASTM): - 1. A307-07b Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength - 2. D2240-05(2010) Standard Test Method for Rubber Property Durometer Hardness. - D. Manufacturers Standardization (MSS): - 1. SP-58-2009 Pipe Hangers and Supports-Materials, Design and Manufacture. - E. Occupational Safety and Health Administration (OSHA): - 1. 29 CFR 1910.95 Occupational Noise Exposure. VA Medical Center, Palo Alto, California Project No. 640-424 Centers for Ambulatory Care, Polytrauma & Blind Rehabilitation Research and VMU - F. American Society of Civil Engineers (ASCE): - 1. ASCE 7-10 Minimum Design Loads for Buildings and Other Structures. - 2. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): - 3. 001-2008 Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition. - G. International Code Council (ICC): - 1. 2009 2012 (Add.No.01) IBC International Building Code. - H. Department of Veterans Affairs (VA): 1. H 18 8 2010 Seismic Design Requirements. (Add.No.01) ## PART 2 - PRODUCTS ### GENERAL REQUIREMENTS - A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings. - B. Elastomeric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve. - C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed. - D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed. - E. Color code isolators by type and size for easy identification of capacity. ## SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENT - A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material. - B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer. - C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment. #### 2.3 VIBRATION ISOLATORS ### A. Floor Mountings: - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes. - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection. - 3. Captive Spring Mount for Seismic Restraint (Type SS): - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum seismic acceleration rating, calculated and certified by a registered structural engineer, sufficient to meet required seismic acceleration for equipment being supported, as determined by Specification Section 13 05 41 SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt. - 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. Isolators shall have a minimum seismic acceleration rating sufficient to meet required seismic acceleration for equipment being supported, as determined by Specification Section 13 05 41 SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. - 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch). - 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch). - B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe. - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box. - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position. - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet. - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box. - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator. - 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed 1/4' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel - C. Snubbers: Each spring mounted base shall have a minimum of four all-directional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation. ### 2.4 BASES - A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing. - B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches). - C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum - of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 2 mm (1/16 inch). - D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements. #### 2.5 SOUND ATTENUATING UNITS A. Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS. ### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Vibration Isolation: - 1. No metal-to-metal contact will be permitted between fixed and floating parts. - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment. - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting. - 4. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F). - 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure. - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment. - B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels. VA Medical Center, Palo Alto, California Project No. 640-424 Centers for Ambulatory Care, Polytrauma & Blind Rehabilitation Research and VMU #### 3.2 ADJUSTING - A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight. - B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation. - C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop. - D. Adjust active height of spring isolators. - E. Adjust snubbers according to manufacturer's recommendations. - F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation. - G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces. ### CONSTRUCTION WASTE MANAGEMENT - A. General: Comply with Contractor's Waste Management Plan and Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. - B. To the greatest extent possible, separate reusable and recyclable products from contaminated waste and debris in accordance with the Contractor's Waste Management Plan. Place recyclable and reusable products in designated containers and protect from moisture and contamination. ### 3.4 COMMISSIONING - A. Provide commissioning documentation in accordance with the requirements of section Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. - B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning. ---END--- VA Medical Center, Palo Alto, California Project No. 640-424 Centers for Ambulatory Care, Polytrauma & Blind Rehabilitation Research and VMU ## SELECTION GUIDE FOR VIBRATION ISOLATORS | EQUIPMENT | | ON GRADE | | | 20FT FLOOR SPAN | | | 30FT FLOOR SPAN | | | 40FT F | FLOOR S | SPAN | | | | |------------------------------|----------------|----------|------|-----|-----------------|------|------|-----------------|------|------|--------|---------|------|-----|------|------| | | | BAS | ISOL | MIN | | | | E | TYP | DEF | E | TYP | DEFL | | | | TYP | Е | L | TYP | Е | L | TYP | Е | L | TYP | E | L | TYP | E | | | | | E | | | E | | | E | | | E | | | E | | | | COMPRESSORS AND VACUUM PUMPS | | | | | | | | | | | | | | | | | | UP THROUG | H 1-1/2 | | D,L, | 0.8 | | D,L, | 0.8 | | D,L, | 1.5 | | D,L, | 1.5 | | D,L, | | | HP | HP | | W | | | W | | | W | | | W | | | W | | | | 2 HP AND OVER: | | | | | | | | | | | | | | | | | 500 - 750 RPI | M | | D | 0.8 | | S | 0.8 | | S | 1.5 | | S | 1.5 | | S | 2.5 | | 750 RPM & 0 | OVER | | D | 0.8 | | S | 0.8 | | S | 1.5 | | S | 1.5 | | S | 2.5 | | PUMPS | | | | | | | | | | | | | | | | | | CLOSE | UP TO | | | | | D,L, | | | D,L, | | | D,L, | | | D,L, | | | COUPLED | 1-1/2 HP | | | | | W | | | W | | | W | | | W | | | | 2 HP & OVER | | | | I | S | 0.8 | I | S | 1.5 | I | S | 1.5 | I | S | 2.0 | | LARGE
INLINE | Up to 25
HP | | | | | S | 0.75 | | S | 1.50 | | S | 1.50 | | | | | | 26 HP | | | | | S | 1.0 | | S | 1.50 | | S | 2.50 | | | | | | THRU | | | | | | | | | | | | | | | | | | 30 HP | | | | | | | | | | | | | | | | | | UP TO | | | | | D,L, | | | D,L, | | | D,L, | | | D,L, | | | BASE | 10 HP | | | | | W | | | W | | | W | | | W | | | MOUNTED | 15 HP | I | S | 1.0 | I | S | 1.0 | I | S | 2.0 | I | S | 2.0 | I | S | | | | THRU | | | | | | | | | | | | | | | | | | 40 HP | | | | | | | | | | | | | | | | | | 50 HP & | I | S | 1.0 | I | S | 1.0 | I | S | 2.0 | I | S | 2.5 | I | S | 2.5 | | | OVER | | | | | | | | | | | | | | | | | ROOF FANS | | | | | | | | | | | | | | | | |-----------------------|-------|-----|------|----|----|------|----|----|------|----|----|-----|----|----|-----| | ABOVE OCCUPIED AREAS: | | | | | | | | | | | | | | | | | 5 HP & OVER | | | | CB | S | 1.0 | | CENTRIFUGAL FANS | | | | | | | | | | | | | | | | | UP TO 50 HP: | | | | | | | | | | | | | | | | | UP TO 200 RPM | В | N | 0.3 | В | S | 2.5 | В | S | 2.5 | В | S | 3.5 | В | S | 3.5 | | 201 - 300 RPM | В | N | 0.3 | В | S | 2.0 | В | S | 2.5 | В | S | 2.5 | В | S | 3.5 | | 301 - 500 RPM | В | N | 0.3 | В | S | 2.0 | В | S | 2.0 | В | S | 2.5 | В | S | 3.5 | | 501 RPM & OVER | В | N | 0.3 | В | S | 2.0 | В | S | 2.0 | В | S | 2.0 | В | S | 2.5 | | 60 HP & OVER: | | | | | | | | | | | | | | | | | UP TO 300 RPM | В | S | 2.0 | I | S | 2.5 | I | S | 3.5 | I | S | 3.5 | I | S | 3.5 | | 301 - 500 RPM | В | S | 2.0 | I | S | 2.0 | I | S | 2.5 | I | S | 3.5 | I | S | 3.5 | | 501 RPM & OVER | В | S | 1.0 | I | S | 2.0 | I | S | 2.0 | I | S | 2.5 | I | S | AIR HANDLING UNIT I | PACKA | GES | | | | | | | | | | | | | | | SUSPENDED: | | | | | | | | | | | | | | | | | UP THRU 5 HP | | | | | Н | 1.0 | | Н | 1.0 | | Н | 1.0 | | H | 1.0 | | 7-1/2 HP & OVER: | | | | | | | | | | | | | | | | | UP TO 500 RPM | | | | | Н, | 1.5 | | Н, | 2.5 | | Н, | 2.5 | | Н, | 2.5 | | 501 RPM & OVER | | | | | Н, | 0.8 | | Н, | 0.8 | | Н, | 0.8 | | Н, | 2.0 | | FLOOR MOUNTED: | T | , | | _ | | | • | _ | _ | _ | _ | _ | | | 1 | | UP THRU 5 HP | | D | | | S | 1.0 | | 7-1/2 HP & OVER: | | | | | | | | | | | | | | | | | UP TO 500 RPM | | D | | R | S, | 1.5 | R | S, | 2.5 | R | S, | 2.5 | R | S, | 2.5 | | 501 RPM & OVER | | D | | | S, | 0.8 | | S, | 0.8 | R | S, | 1.5 | R | S, | 2.0 | | HEAT PUMPS | | | | | | | | | | | | | | | | | ALL | | S | 0.75 | | S | 0.75 | | S | 0.75 | CB | S | 1.5 | | | NA | | CONDENSING UNITS | | | | | | | | | | | | | | | | | ALL | | SS | 0.25 | | SS | 0.75 | | SS | 1.5 | CB | SS | 1.5 | | | NA | # NOTES: VA Medical Center, Palo Alto, California Project No. 640-424 Centers for Ambulatory Care, Polytrauma & Blind Rehabilitation Research and VMU - 1. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span. - 2. For projects in seismic areas, use only SS & DS type isolators and snubbers. - 3. Suspended: Use "H" isolators of same deflection as floor mounted.